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Ap2o /&f/5,/7cZ/fAA
Nonlinear two-dimensional sail theory

Jean-Marc Vanden-Broeck , )

Department of Mathematis Stanford University, Stanford, California 94305
(Received 23 March 1981; accepted 5 January 1982)

Steady two-dimensional flow past a sail is considered. The sail is assumed to be supported by two masts. The
flow and the shape of the sail are determined as functions of the direction a of the flow at infinity and the
Weber number A. The full nonlinear problem is formulated as an integrodifferential equation for the shape of
the sail. This equation is discretized and solved numerically by Newton's method. Sail profiles, the slack in
the sail, and the lift coefficient are presented for various values of a and A.

I. INTRODUCTION II. FORMULATION
We consider the deformation of a two-dimensional Let us consider the steady two-dimensional flow of

sail due to the steady potential flow of an incompres- an inviscid incompressible fluid past an inextensible
sible inviscid fluid around it (see Fig. 1). The sail is and flexible sail. The flow configuration, the sail, and
supported by two masts and is characterized by its the coordinates are sketched in Fig. 1.
constant tension a and by the distance c between the The leading edge or luff of the sail is attached to a

_. two masts. The fluid has density p and velocity U at mast at x=Oy =0 and the trailing edge or leach is
infinity. As we shall see, the shape of the sail is de- attached to another mast at x =cy 0. At infinity we
termined by the direction a of the flow at infinity and require that the flow have speed U and direction a.
by the Weber number

=2 We introduce dimensionless variables by taking c as
the unit length and U as the unit velocity. Let the shape

This problem was first considered by Thwaites' and of the sail be described in dimensionless variables by
Nielsen.2 These authors obtained approximate solu- y =F(x),0- x 1. The conditions of attachment to the
tions for a small by using thin aerofoil theory. Their masts imply
work was further generalized by Tuck and Haselgrove3  F(0) = F() = 0. (2)
and Dugan. 4 More recently, Vanden-Broeck and Kel-
ler5 obtained an asymptotic solution for X small for ar- The difference between the pressures on the two
bitrary values of a. sides of the sail is balanced by K(Xkr, where K is the

curvature of the sail and u is the constant tension in it.
pnotem resentcpaper. wnec. 11wolv rmte the i ro- By using Bernoulli's equation we obtain, in dimension-problem numerically. In Sec. II we formulate the prob- less variables

lem as an integrodifferential equation for the unknown less variables

shape of the sail. In See. HI we present a method to

solve this equation numerically. The method involves Here, q*(x) and q'(x) are the flow velocities above and
discretization, which converts the equation into a set below the sail, respectively. The parameter x is the
of nonlinear algebraic equations. Then it employed Weber number defined by (1).
Newton's method to solve these equations. The results
obtained are discussed in Sec. I. It is convenient to introduce the complex perturba-tion velocity

Many different families of solutions exist. Tuck and
Haselgrove's8 stability analysis shows that only one

family of solutions is stable for a small. Therefore, Here, it and , denote, respectively, the chordwise and
we present only numerical results for this family. It normal components of the velocity. The function a -ib
is found that for each value of a there is a maximum is an analytic function of z = x + iy which vanishes at
value of the Weber number x above which this family infinity. Therefore, we can write, by using the Plem-

fails to exist. ell formula

a*(x) + a-(x) - ijb*(x) + b-(v)]= f ( {[a(x,) -a*(x) ] - ilb' x) - b(x)111 + F'(x)] d,. (5)
V) (x, -x) + i[F(xi -F(x)]

The integral in (5) is of the Cauchy principal value v*(x)=u'x)F'(x), Oc x' 1. (6)
form. Using the definition (4), we can rewrite (6) in the more

The velocity must be tangent to the sail on both sides. convenient form
Thus, we have b*(x) - b(x) =la*(x) - a(x)jF'(x), (7)
a)Present address: Department of Mathematics and the Mathe- b*(x) + b(x) =-2 sin a + [a*(x) 4 a"(x)F'(x)

matics Research Center, University of Wisconsin, Madison,
Ot Wisconsin 53706. + 2 cos aF'(x). (8)
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Y We now rewrite (3) in the form

0.1F + X [a'(x) -a(X)][1+F'(x)t[2cosa

o05- +a*(x)+a(x)]=O. (I1)

Finally, we impose the Kutta condition at x = I by re-
C__ X quiring
C X

a*(1)=a'(1). (12)
FIG. 1. Computed profile of a sail with a '/6, W 0.82, and The condition (12) is clearly not satisfactory when
:-3.0. The unit length in y is c._F'(x)~-(I -x) v withv - as x- I

By substituting (7) into (5) and taking real and ima- However, such exceptional cases did not occur in the
ginary parts we obtain numerical solution. We shall consider only values of

bi(x) + b'(x) a between 0 and 7r/2 so that the Kutta condition is im-
posed at the trailing edge.

1 f1a*(x,) -a-'x)1[1 + F'(xl)2 1(x1 -x) dx, , (9) For given values of x and a relations (8)-(12) define
IT (x1 -x)l + [F(x1) -F(x) a nonlinear system of integrodifferential equations for

a'(x) +a'(x) the unknowns F(x), a'(x), a'(x), b(x), and b-(x).
[a*(xi)-a'(xi)][1+F'(xi)][F(x ) -F(x)I dx] . By substituting (7), (9), and (10) into (8) and (11) we

-! = ,f ' (x -x)l + [F(x,) -F(x) obtain the following reduced system of equations for

(10) the two unknowns a*(x) -a(x) and F(x):

1 I jl~+F'(x9][a.(x) -a.(xi){(x, -x) +F'(x)[F(x,) -F(x)l =-2 sin a +2 cos aF'(x), (13)
f0(x, - x + [F(x,) -F(x)r

F"(X + 4 (x)x)l+FI(x)](2 cos X2 - 1 fo a(x,)-a'(x)[I+ F'(x,)2)fF(xi)-F(x)I dxi) -0 (14)
+ F' (x) -a]3 F 2(xi -x) +[F(x)- F(x)0. (

This system is solved numerically in the next section. mediate mesh points

From the solution we can then compute the slack 1 x,.1/ 2 =(x,+x,.j)/2, I=2,...,N-2. (21)
in the sail by the formula

First, we compute F'(xj), F'(x,.,/2 ), F"(x,.l/2), F(x,.l /),
S= {1 + [F'(x) }-/2dx -1. (15) and a(x,. 1/2)-a"(x.,/2 ) in terms ofF, andA; byfour

point formulas.
Following Thwaites' we define the parameter $ by the
relation Next, we evaluate the integrals in (13) and (14) by

using the trapezoidal rule with the mesh points x .=in2c/21i /2 . (16) The mesh points x, are locally symmetric about x,. J / 2

The lift coefficient is obtained from the solution by and the quadrature formula is also symmetric.

substituting (7) into the formula (15) given by Vanden- Therefore, the contribution from the neighborhood of
Broeck and Keller. 5 Thus, we obtain the singularity cancels out, permitting us to evaluate

the Cauchy principal value as if it were an ordinary

CL = 12 J' [a(x) -a'(x){1 + [F'(x)fjdxI. (17) integral.

In doing so it is important to notice that the inte-
grands in (13) and(14) behave like x "1 3 as x-0. We

III. NUMERICAL ANALYSIS handle these singularities by subtracting the singular
In order to solve the system of equations defined by part before integrating numerically. We then integrate

the singular part analytically.
(2), (12), (13), and (14) we introduce the mesh points

x= (1-1)/(-1), 1=1..... ,N, (18) By discretlzlng (13) and (14) we obtain 2N - 6 nonlin-
ear algebraic equations for the 2N - 4 unknowns F, and

and the corresponding unknowns A;. An extra equation is obtained by imposing the Kutta

F,=F(x,), 11.... ,N, (19) condition at x=l via the relation

A; =a*(x)-a'(x,), t=2,... ,N. (20) tim (1 -x)"'(a(x)-a'(x)]=O. (22)
i-i

Relations (2) and (12) imply F, =F =0 and A"=0, so A three-point Lagrange extrapolation formula is used
that there are only 2N -4 unknowns F, and A1. to evaluate the limit in terms of A;. The last equation

We shall satisfy Eqs. (13) and (14) at the N -3 inter- is obtained by imposing (2) by means of a three-point
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FIG. 2. Computed profiles of a sail with a =1r/4 of X=0.5, FIG. 4. Values of the lift coefficient CL as a function of 1 for
0.8, and 1.0. The corresponding values of 3 are, respectively: a=r/4. The dashed curve corresponds to Vanden-Broeck and
6, 2.8. and 1.6. The unit length in which both x and y are Keller's asymptotic formula.
measured is c.

using a neighboring solution as a starting guess.Lagrange formula.
Among all these possible solutions, only one is " rea-

For given values of and a this system of equations sonable" in the sense that it has a simple unimodal
is solved by Newton's method. The values of 3 and CL shape cambered to lee of the wind. Tuck and Hasel-
can then be computed by quadrature from (16) and (17). grove's stability analysis shows that this family of

solutions is the only stable one for a small. There-
IV. DISCUSSION OF THE RESULTS fore, we extend only this family to the nonlinear case.

We have used the method described in Sec. IlI to Typical profiles are shown in Figs. I and 2. The vat-
compute solutions for various values of x and a. Many ues of 3 and C L for a = r/4 are shown as functions of
different families of solutions exist. They have been in Figs. 3 and 4. The broken lines correspond to the
studied for a small by Thwaites.1 These families can asymptotic formulas (14) and (20) given by Vanden-
be computed for arbitrary a and x in the following way. Broeck and Keller. 5 The asymptotic formula for 3
For a given value of x we compute the solution for a agrees with the numerical results within fifteen percent
small value of a by using the uniform stream (i.e., the for A < 0.3.
solution corresponding to a =0) as the initial guess.
Provided that x is not close to any of the critical values In Fig. 5 we present the values of x vs 3 for a = r/100
described by Thwaites,' the numerical scheme conver- and a = /10. The broken line corresponds to Thwaites'
ges rapidly to his solution for the given value of x. solution. It shows that his solution is a good approxi-
Once a given solution has been obtained, however, a mation for a small, but it is not uniform as 3 tends to
type of "boot-strap' technique is employed, that is, a zero. The discrepancy between his solution and the

converged solution for one value of x is used as the ini- exact numerical solution increases rapidly as 3 gets
tial guess for a solution with x altered by a few percent. close to zero. In the particular case 3 = 1, the values

Similarly, for fixed x, the angle a could be varied of CL were computed for various values of a. The nu-
merical values of CL were found to agree with Thwaites'
solution within 5% for a r/ 1 8, 20% for a 4 7r/6, and
30% for a< ir/4.

A

2.32

2.0.

-I

0 0o • .0

FIG. 3. Values of the Weber number , as a function of 1 for FIG. 5. Values of the Weber Number A as a function of p for
= v/4. The dashed curve corresponds to Vanden-Broeck and =r/100 (curve a) anda=r/l0 (curve b). The dashed curve

Keller's asymptotic formula, corresponds to Thwaltes' calculations.

4a
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Figures 3 and 5 and similar results obtained for dif- then likely to occur. A more realistic model for a
ferent values of a indicate that for each value of a large was proposed by Dugan.4

there exists a maximum value x0(a) of the Weber num-
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